Generalization of the symplectic modular group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Modular Symbols

Let K/Q be a number field with euclidean ring of integers O. Let Γ be a finite-index torsion-free subgroup of the symplectic group Sp2n(O), and let N be the cohomological dimension of Γ. We exhibit a finite, geometrically-defined spanning set of H (Γ;Z) by generalizing the modular symbol algorithm of Ash and Rudolph for SLn(O).

متن کامل

Modular Representations of the Ortho-symplectic Supergroups

A Chevalley type integral basis for the ortho-symplectic Lie superalgebra is constructed. The simple modules of the ortho-symplectic supergroup over an algebraically closed field of prime characteristic not equal to 2 are classified, where a key combinatorial ingredient comes from the Mullineux conjecture on modular representations of the symmetric group. A Steinberg type tensor product theorem...

متن کامل

a note on the affine subgroup of the symplectic group

we examine the symplectic group $sp_{2m}(q)$ and its correspondingaffine subgroup. we construct the affine subgroup and show that itis a split extension. as an illustration of the above we study theaffine subgroup $2^5{:}sp_4(2)$ of the group $sp_6(2)$.

متن کامل

On a Symplectic Generalization of Petrie’s Conjecture

Motivated by the Petrie conjecture, we consider the following questions: Let a circle act in a Hamiltonian fashion on a compact symplectic manifold (M,ω) which satisfies H(M ;R) = H(CP,R) for all i. Is H(M ;Z) = H(CP;Z) for all j? Is the total Chern class of M determined by the cohomology ring H∗(M ;Z)? We answer these questions in the six dimensional case by showing that H(M ;Z) is equal to H(...

متن کامل

Compactification of the Symplectic Group via Generalized Symplectic Isomorphisms

Let G be a connected reductive algebraic group over an algebraically closed field k of characteristic zero. We have a left (G×G)-action on G defined as (g1, g2) ·x := g1xg −1 2 . A (G×G)-equivariant embedding G ↪→ X is said to be regular (cf. [BDP], [Br, §1.4]) if the following conditions are satisfied: (i) X is smooth and the complement X \G is a normal crossing divisor D1 ∪ · · · ∪Dn. (ii) Ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1966

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-11-3-281-291